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A S TR ACT

Thp paper is devided into two parts.

In part I the problem of radiation from a generic body with

variable thermal coefficients in considered and a general equ

tion of Volterra's type is derived. Explicit expression is also

given for the spherical shell, whence, as particular case, (i)

the solid sphere, (ii) the flat plate, (iii) the indefinite

body, can be studied. Also a pratioal solution for numerical

application is deviced.

In part II the theory is applied to particular laws of van

ation of thermal ooeffilcente, and the effects of such

coefficients is investigated.
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'IXTR0DC TI N

The analysis of radiative heat conduction problems has re-

ceived oonsiderable attention in recent years, by reason of the

many technical problems referring to it. However, none of the se

lutions available in the literature seems to be complete, since,

in general, the simplified ease of constant thermal coeffioients

(enductivity and specifie heat) in considered. It in well Imew,

en the contrary, that radiation is efficient only at very iht

temperatures, where the effects ef variable oefficients oan~t

be Ignored.

This paper deals with the application to radiation probleumet

the particular method of avalysts described in Ref. 1.

The method is based on the use of Green's function throuh

which It Is possible to reduce any heat enductien problem te an

integral equation of Velterra's type. In this latter the only L

dependent variable Is time, whereas space oeordinates are elini-

mated.

In Ref. 1, Green's function Is determined for a body of whal

ever shapes Its analytical expression Lst

0 n P r P . "4A

where U. and pn are the orthogonal eigefunctions and the etgen-

values of the problems:

KIVU.+ c~plu U.-0 in the solid velume V

(2)~
-z =n 0 at the boundary W
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Eq. (1) as well Iow provides the aise in temperature at P,

at timet due to a unit heat pulse aetlj at P*,, at time t.

It should be pointed out that the problem desoribed by (2) we

ferm to the real body of the problemo but with oenstant thermal

ooeffioieats; it is therefore, a linear problem sad, at a certain

extent, an elementary on. The introduction of thermal ooefti -

cents variable with temperature nan be however be perferned ex-

aotly starting fren the functiens (2), an It will be show la the

subseqjuent numbers.
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PART I

GENERAL THEORY

1 - General Equations.

The heat oonduction equation for sa inotropio body is, as well

known s

div [K(T) grad T] - ZT (3)

Setting (se* also ef. 2)

K(T) C', : (4)
K;. dT

(where Ki is the condutivity at an referefoe temperature, f.i.,

the initial one)9 Eq. (3) reduces te

VT' T' 09

K 'Ot

Setting againt

c K/K

(c/K) ij,(T)" 1(V) (5)

the fOregoing equation yields

K; VT (6)

.... ~ ~~ ~~ -- •i .. i
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wheres

It is seen, therefore, that the problems is identicalwith that

of constant coefficient@ (ci Mad K), provided that the sources

(7) be introduced. The problem ls, of course, stillnen-linear, but
every non-linearity has been introduoed into the fictitious

sources q.
In radiation problems, there are also the sources arisingfrom

heat losses at the surfaces* It is assumed, as oustomarily, that

such losses be adequstely expressed by:

Q(P )a F, (Tv) a F(T') (8)

where T, denotes the temperature of the generic point of surface

W . It is usually admitted that F1(Tw)n-ELT4 ; but no restriction

is placed here, also in view of the faot that no simplification

would occur in general, once the temperature T' is introduced.

The temperature T' at any point of the body is then: (Ref. 3)

T'(Pt) zA I1TfvP.t-)(.,\,V.f P,,,t.)(;dYi 9

where dV. is the element surrounding P wad We the surface element

surrounding P,,, T'1 is the initial tuasofewmod t eo3ratw.e, assumd

to be. onetant.
Eq. (9) is the general equation of the problem. It isofcourse,

non-linear (its non-lineaities arise fron the form of q aMF ).
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It In, however, well suitable fe ammorioal entegration, since it

Logan integral equation in ma open variable, suoh as time.

It is also seen that, Mee the funotiens desoribing the radi-

atioa mechanism (F,) and the material behaviour (q, and K(T)) are

gives, the solution is essentially depending en the body shape.

The following Arts. are essentially devoted to write Eq. (5)

for the most cemmon shapes. or eother shape@, see Ref. 2.

2 - The Sphorioal Shell

Consider a spherioal shell of outew radius a and inner radius ap

; let sa(i-P) be its thioeess.

The eigenfunotios Un for the dase of radial flow ame i
U" C "M I.t .,2, ...... (o

U. _ _ _ _ Ir ,

and the eigenvalues p. i

P" c (10')

(for the values of C, ad w sOs Appendix); x is theendimensioaal

eordinate represented in Pig. 1.

Prom Eqs. (I) - (10), one has now

-/~~~~~ (P P; t -A)-,re, ..,,
4 r- c iN I
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J W X c a l I I w I//k +2 Wc~ps, [I - (I-P) l ('1~ e. casjZ t of n O ~nZ~tf

T'(x,t) uJ"SA{fC14-1'

+2 C~os wztw- 2PCsZn
i-zQ ) (I co (~

X~j(T I-L (T;2' e tti
at 24A4J

Elq. (12) sa be fuitbuibe wade nea41.mmumali Settings

-l Kt) laa KTjT

F F(TW) Ea;r' E1f (T~ Zro);mJ

it to obtsaeds

+ 2 . Vnz jqT V d

.(0 + *()2 TuoenvJ fZT'. Ti '
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where the following further positions have been mader

__________ 2 *~~p ~ ~(15)

Eq. (14) ts the required o*. The spaoe variable z appearing in

it Is morel7 a peraneteri more ezeaotl Eq. (14) yields an infi-

alto set of integral equations in the viabb, eash corresponding

to a value of X

3 - The Solid Sphere,

The equation for the solid sphere to formally identioalto (14),

with jsO In this cass, the equation for the () in

tan 4a ('6

sad the oeoffioisets C O Cn are given in Appendix. The funotions

o., 9 have now the exprossions:

~,(z " c[I- X] 2

(7)

y, W C &in](
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4 -he lat Plate.

Per the flat pla tep 1 , and (n. ne has therefore (App.)

(x C 2 &1 o( ) co 1 } (i8)

.(C) cos n1% 'cobnlTg,- cos n T cosn'lr.*

mad Eq. (14) is writteau

& 4 "nrt ' A) 1 • ,

By 1 [cn . . (19)

The Somi-Indofnlite Solid.

Eq. (19) holds also an s-.. However, a ze-arrafaement of the

equation is noessary, minee the oharaoteristlom length s is now

singing.

With the vell-kleaw teoenique of Fouier's integral, Eq. (19)

yields$

CbtX)cfZ T:) (20) '
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wmke aw the aoadtaeaslemal qul atities ee s

x z ,x , Whe X I5 sIe dimosieal absOtus eempte
K trm the G.Wfae. (21)

e a X d amnioaal ti.me
K

6 - The Oase of Onstat DiffuMMIW6

When q -0 , a great SemplLfioatlea eours. Pirstly, the tem

in brsokets Waashe$l seoondli, the integral equation needs only

be written at the surfas, since the surfaee temperature is dope&

din on the surfse temperature itself. Bq. (14) beomes$

CCO+ (if)Z " .1 T T 1+T (22) V'

whioh also appLee, obvietsly, for the solid sphere sad ter

the slab. Per the sem-iadef alte solid, sinee I

C(  = F (23)

Eq. (5) yields:

When T'=T, i. e., when also the effeots of variable oenduotil

L
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ity are ignored, Eqs, (21) - (22) are substantially the owm as

those of Ref,3

Eqs. (21) - (22) lod themselves to a straight numerical Late-

gratien. An &--*0 9 an asymptetie solution must be devioed (Ref.3)

7 - Approximate Solution.

Coming back to Eq. (3'), it in seen that, lettings

dt' (c/K)L
N dt (c/K) (5

the same equation yields the onsetant coeffioients esnot

KVT ' T' (26)

to whioh, aoeerding to the body shape, Bqs. (22) - (23) ean be aj

plied.

The introduction of t' does net take away, of eusee, the non-

linearity of the problem, ie.os the relationship beoem T' mad

t' is not known (and to oet even uaaique o sizes It depends em 00

epaooeoeerdinmte). In radiation problon however, te higheost Ve
i6T'

Us f' of an near the MrfaoeG this meae that the maIn LOW-

tanoe ts that of the sewoee q hear the va41. A good appWsOXUN-

tien to thefepore to asssi

dt' T-it--t - [ ,
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In this vay, the prooedure of the .sloulation is to determine

ow re lqs. (21) or (22), and so to determlae ru- Vw(t') The&

Eq. (25) provids t t'( t) nd Eq. (2) T T'(V, T)
sad so the problom is fully solved,
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ILLUSTRATIVE EXAMPLES

The foregoing theory has boon applied to amerioal eases. Re

suits are oolleoted in Figs. 2 - 3 - 4 - 5 - 6.

Pigs. 2 and 3 refer to the radiation of soul-infinite solid

with thornial oooffioient vary Ing aooording to the law$

Ku T (

Pig. 2 gives the variation of sondimonsoensl wall temperature

vs. nondimensional time for several values of in and b . The

influmo of spoifit best is meeo to be peater, in goneral, than

that of eoaduotivitye

Pig. 3 providoes - for the same ease - the variatioa Of asq

faOe heat flow Vorsus time.

Pigs. 4 and 5 refer to the solid sphere, with lIn asalogousto

(s). ig. 4 (whish is of the same tpe of Pig, 2) provides theyv

riatien of wall tempeaturo vs. tine &ad eompan ien is made with

the ease of oenstant coeffioients. Fig. 5 gives, for We valuesof

nondimensional times, the apsoe-variation of tenmrature in the

sphere also hero asspaWisen is made with the ease of constant

oooffioioats.

Pig. 6 refers to the ease of the below oiliodeu (whose theory

has not been given La this roportl see Ref. 4). Tho heatig endL

tiens 0 0
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Qh(T 0 -T) w a the innaer wall

Ed T in the outer wsllw

vith h and To given La Fig. 6. The problem simulates an element

of radiator a a spaoe powerplato The temperature in the hot side

are given by the plot of 1F'6
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1 - "ra s )'ori cal shell1, rn-- iz'rius n. !,n tl'.iMesz *- sa(1-J)

t'io eci.nviv.Thes of thIe )roble:.:i~re ob1:uinc' n s snid in R~ef. 4,

frovi Vie trason 'cntr'l e qun t ion:

tant W, 0= 2 nz 1,2 ...

'here iLs rroot uO,=O , corresponling to the first term of

r.h.s. of 739. (1:1). The constannts C. of Eq, (10) sre ohtline

through the noriinlity condition:

J n*U dV I

which in this ca-.se ,,ields:

si 3 (),+t

C 20 2

2 -
7or th p solid sphere on,- has si' iply to set =0 ,and 303I

tan Wn=

Cn2W, J+W~
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3 - For the flat plate, one hps siTnnly to set i= , nd so:

tan co a 0 n a nl

n z O _, ,2? .....cn

4 - For the semi-indefinite solid, let Eq. (19) be written with

dimensional quantities X and t and let s approaoh infinity.Thus

K t  4S0

E6 T!' fr - ix-'t4(t -A
-~ ~ ~ d [i+~ ' ~'12f cob- c i

As well known, as & approaches infinity, one has to take

only such values of n , for which -1 is finite with the posi-

tions (21), and letting furthermore.

"--K-O (whence - V
q ( s Ti oti

Eq, (20) is obtained,
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GLOS2AJRY OF OY 2IIOLS

112110O U"'TIOIT ATI- R' P 72 I

a - 7, 3ius of outer sphere

C - 7pecific heat

f - 1 moction deffining~ rn irtion 7qr. (13)

p-Cneric eigCnvnlues

q Tlent source intensity

- Thell. tickness

t DitiensionaJ. time

t' -rinsformre1 tine '-:n. (27)

-r Gr-en's function

x 7lon'ii.ensional co-orciinnte (Fig. 1)

On- NTo -irlization constants

F }-'ntions lefining rajiation

K - 'Lherrncl conductivity

P } Points in the body

?WPo ints n't the -.urfnce

Q - t7xternn1 hent "low

T - Y e-m. -rnt u-re

T r nn sf or nc' I te- p e r nir-e 7q. (4)

Un -- cio

V - "Ody voIurme

W 'B2ody surfe-ce

- )ee "s t

4-P -hia'-ness / rmliusI
- 2nissivityr

V lunction Jefining vti.rintion of diffusivity

T ion ii LllSiOnll, tinIe
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X - Diff usivity

A- Time

)A - Nondiviensional time

z - Outer normal to W

5 -Boltzmann's constant

T Nondi-'ensional temperpture

eo ee (15)

o - See Eq. (10')

V - Laplace operator

SUBSr(MIPTS

o,rn - Order of eigenfunctions

- Transformed times and temiperature

- Initial values

- Surface values

- Du Lming variation

PART II

m,s- exponents of laws lefining variation of K nnd cr

To - Total teripe-sture

h -Coefficient of transrission

-----------I
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LIl-T OF ILLTJ::}RAcIOT1

F ig . 1 - The Spherical Shell

Fig. 2 - Semii-indefinite Solid-radiation
Titae-variation of Teripernture

Fig. 3 - Serri-indrefinite 3olid-radin.tion
Time-vnriation of Hest Flux

- Fig. 4 - iPhdiation From a Solid Sphere
Ti:ie-V--riation of Temperature

Fieg. 5 - Radiation Prom a Solid Sphere
3pace-variation of Te?-pernturO
in The ",phere

Fig. 6 - RTdisting Cylindricnl Shell-tern
pernture on hot Side
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RADIATION FROM A SOLID SPHERE
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